Metamath Proof Explorer


Theorem addge0d

Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
addge0d.3 φ0A
addge0d.4 φ0B
Assertion addge0d φ0A+B

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 addge0d.3 φ0A
4 addge0d.4 φ0B
5 addge0 AB0A0B0A+B
6 1 2 3 4 5 syl22anc φ0A+B