Metamath Proof Explorer


Theorem mulge0d

Description: The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
addge0d.3 φ 0 A
addge0d.4 φ 0 B
Assertion mulge0d φ 0 A B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 addge0d.3 φ 0 A
4 addge0d.4 φ 0 B
5 mulge0 A 0 A B 0 B 0 A B
6 1 3 2 4 5 syl22anc φ 0 A B