Metamath Proof Explorer


Theorem mulge0

Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion mulge0 A0AB0B0AB

Proof

Step Hyp Ref Expression
1 0red AB0
2 simpl ABA
3 1 2 leloed AB0A0<A0=A
4 simpr ABB
5 1 4 leloed AB0B0<B0=B
6 3 5 anbi12d AB0A0B0<A0=A0<B0=B
7 0red AB0<A0<B0
8 simpll AB0<A0<BA
9 simplr AB0<A0<BB
10 8 9 remulcld AB0<A0<BAB
11 mulgt0 A0<AB0<B0<AB
12 11 an4s AB0<A0<B0<AB
13 7 10 12 ltled AB0<A0<B0AB
14 13 ex AB0<A0<B0AB
15 0re 0
16 leid 000
17 15 16 ax-mp 00
18 4 recnd ABB
19 18 mul02d AB0B=0
20 17 19 breqtrrid AB00B
21 oveq1 0=A0B=AB
22 21 breq2d 0=A00B0AB
23 20 22 syl5ibcom AB0=A0AB
24 23 adantrd AB0=A0<B0AB
25 2 recnd ABA
26 25 mul01d ABA0=0
27 17 26 breqtrrid AB0A0
28 oveq2 0=BA0=AB
29 28 breq2d 0=B0A00AB
30 27 29 syl5ibcom AB0=B0AB
31 30 adantld AB0<A0=B0AB
32 30 adantld AB0=A0=B0AB
33 14 24 31 32 ccased AB0<A0=A0<B0=B0AB
34 6 33 sylbid AB0A0B0AB
35 34 imp AB0A0B0AB
36 35 an4s A0AB0B0AB