Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
3 |
1 2
|
leloed |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
5 |
1 4
|
leloed |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
6 |
3 5
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ↔ ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) ∧ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) ) |
7 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 0 ∈ ℝ ) |
8 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ ) |
9 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) |
10 |
8 9
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
11 |
|
mulgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
12 |
11
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
13 |
7 10 12
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
15 |
|
0re |
⊢ 0 ∈ ℝ |
16 |
|
leid |
⊢ ( 0 ∈ ℝ → 0 ≤ 0 ) |
17 |
15 16
|
ax-mp |
⊢ 0 ≤ 0 |
18 |
4
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
19 |
18
|
mul02d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 · 𝐵 ) = 0 ) |
20 |
17 19
|
breqtrrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 0 · 𝐵 ) ) |
21 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
22 |
21
|
breq2d |
⊢ ( 0 = 𝐴 → ( 0 ≤ ( 0 · 𝐵 ) ↔ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
23 |
20 22
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 = 𝐴 → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
24 |
23
|
adantrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 = 𝐴 ∧ 0 < 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
25 |
2
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
26 |
25
|
mul01d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 0 ) = 0 ) |
27 |
17 26
|
breqtrrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐴 · 0 ) ) |
28 |
|
oveq2 |
⊢ ( 0 = 𝐵 → ( 𝐴 · 0 ) = ( 𝐴 · 𝐵 ) ) |
29 |
28
|
breq2d |
⊢ ( 0 = 𝐵 → ( 0 ≤ ( 𝐴 · 0 ) ↔ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
30 |
27 29
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 = 𝐵 → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
31 |
30
|
adantld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 = 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
32 |
30
|
adantld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 = 𝐴 ∧ 0 = 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
33 |
14 24 31 32
|
ccased |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) ∧ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
34 |
6 33
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
36 |
35
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |