Metamath Proof Explorer


Theorem ltled

Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
ltled.1 φA<B
Assertion ltled φAB

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 ltled.1 φA<B
4 ltle ABA<BAB
5 1 2 4 syl2anc φA<BAB
6 3 5 mpd φAB