Metamath Proof Explorer
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario
Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
|
|
|
ltd.2 |
|
|
|
ltled.1 |
|
|
Assertion |
ltnsymd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltd.1 |
|
2 |
|
ltd.2 |
|
3 |
|
ltled.1 |
|
4 |
1 2 3
|
ltled |
|
5 |
1 2
|
lenltd |
|
6 |
4 5
|
mpbid |
|