Metamath Proof Explorer
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario
Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
|
|
|
ltd.2 |
|
|
|
ltled.1 |
|
|
Assertion |
ltnsymd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltd.1 |
|
| 2 |
|
ltd.2 |
|
| 3 |
|
ltled.1 |
|
| 4 |
1 2 3
|
ltled |
|
| 5 |
1 2
|
lenltd |
|
| 6 |
4 5
|
mpbid |
|