Metamath Proof Explorer


Theorem ltnsymd

Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
ltled.1 φ A < B
Assertion ltnsymd φ ¬ B < A

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 ltled.1 φ A < B
4 1 2 3 ltled φ A B
5 1 2 lenltd φ A B ¬ B < A
6 4 5 mpbid φ ¬ B < A