Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | |- ( ph -> A e. RR ) |
|
| ltd.2 | |- ( ph -> B e. RR ) |
||
| ltled.1 | |- ( ph -> A < B ) |
||
| Assertion | ltnsymd | |- ( ph -> -. B < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltd.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltled.1 | |- ( ph -> A < B ) |
|
| 4 | 1 2 3 | ltled | |- ( ph -> A <_ B ) |
| 5 | 1 2 | lenltd | |- ( ph -> ( A <_ B <-> -. B < A ) ) |
| 6 | 4 5 | mpbid | |- ( ph -> -. B < A ) |