Metamath Proof Explorer


Theorem elfzo0z

Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion elfzo0z A0..^BA0BA<B

Proof

Step Hyp Ref Expression
1 elfzo0 A0..^BA0BA<B
2 nnz BB
3 2 3anim2i A0BA<BA0BA<B
4 simp1 A0BA<BA0
5 elnn0z A0A0A
6 0red AB0
7 zre AA
8 7 adantr ABA
9 zre BB
10 9 adantl ABB
11 lelttr 0AB0AA<B0<B
12 6 8 10 11 syl3anc AB0AA<B0<B
13 elnnz BB0<B
14 13 simplbi2 B0<BB
15 14 adantl AB0<BB
16 12 15 syld AB0AA<BB
17 16 expd AB0AA<BB
18 17 impancom A0ABA<BB
19 5 18 sylbi A0BA<BB
20 19 3imp A0BA<BB
21 simp3 A0BA<BA<B
22 4 20 21 3jca A0BA<BA0BA<B
23 3 22 impbii A0BA<BA0BA<B
24 1 23 bitri A0..^BA0BA<B