Metamath Proof Explorer


Theorem elfzouz

Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzouz ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( ℤ𝑀 ) )

Proof

Step Hyp Ref Expression
1 elfzo2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) )
2 1 simp1bi ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( ℤ𝑀 ) )