Metamath Proof Explorer


Theorem elfzolt3b

Description: Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzolt3b ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ( 𝑀 ..^ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elfzoel1 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℤ )
2 elfzoel2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ )
3 elfzolt3 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 < 𝑁 )
4 fzolb ( 𝑀 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) )
5 1 2 3 4 syl3anbrc ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ( 𝑀 ..^ 𝑁 ) )