Step |
Hyp |
Ref |
Expression |
1 |
|
df-s2 |
|- <" ( W ` I ) ( W ` ( I + 1 ) ) "> = ( <" ( W ` I ) "> ++ <" ( W ` ( I + 1 ) ) "> ) |
2 |
|
simp1 |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) |
3 |
|
simp2 |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. NN0 ) |
4 |
|
elfzo0 |
|- ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( I + 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( I + 1 ) < ( # ` W ) ) ) |
5 |
4
|
simp2bi |
|- ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) |
6 |
5
|
3ad2ant3 |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
7 |
3
|
nn0red |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. RR ) |
8 |
|
peano2nn0 |
|- ( I e. NN0 -> ( I + 1 ) e. NN0 ) |
9 |
3 8
|
syl |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. NN0 ) |
10 |
9
|
nn0red |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. RR ) |
11 |
6
|
nnred |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. RR ) |
12 |
7
|
lep1d |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I <_ ( I + 1 ) ) |
13 |
|
elfzolt2 |
|- ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( I + 1 ) < ( # ` W ) ) |
14 |
13
|
3ad2ant3 |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) < ( # ` W ) ) |
15 |
7 10 11 12 14
|
lelttrd |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I < ( # ` W ) ) |
16 |
|
elfzo0 |
|- ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) ) |
17 |
3 6 15 16
|
syl3anbrc |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ..^ ( # ` W ) ) ) |
18 |
|
swrds1 |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) |
19 |
2 17 18
|
syl2anc |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) |
20 |
|
nn0cn |
|- ( I e. NN0 -> I e. CC ) |
21 |
20
|
3ad2ant2 |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. CC ) |
22 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
23 |
22
|
oveq2i |
|- ( I + 2 ) = ( I + ( 1 + 1 ) ) |
24 |
|
ax-1cn |
|- 1 e. CC |
25 |
|
addass |
|- ( ( I e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) |
26 |
24 24 25
|
mp3an23 |
|- ( I e. CC -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) |
27 |
23 26
|
eqtr4id |
|- ( I e. CC -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) |
28 |
21 27
|
syl |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) |
29 |
28
|
opeq2d |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> <. ( I + 1 ) , ( I + 2 ) >. = <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) |
30 |
29
|
oveq2d |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) = ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) ) |
31 |
|
swrds1 |
|- ( ( W e. Word A /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) |
32 |
31
|
3adant2 |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) |
33 |
30 32
|
eqtrd |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) |
34 |
19 33
|
oveq12d |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( <" ( W ` I ) "> ++ <" ( W ` ( I + 1 ) ) "> ) ) |
35 |
1 34
|
eqtr4id |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> <" ( W ` I ) ( W ` ( I + 1 ) ) "> = ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) ) |
36 |
|
elfz2nn0 |
|- ( I e. ( 0 ... ( I + 1 ) ) <-> ( I e. NN0 /\ ( I + 1 ) e. NN0 /\ I <_ ( I + 1 ) ) ) |
37 |
3 9 12 36
|
syl3anbrc |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ... ( I + 1 ) ) ) |
38 |
|
peano2nn0 |
|- ( ( I + 1 ) e. NN0 -> ( ( I + 1 ) + 1 ) e. NN0 ) |
39 |
9 38
|
syl |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) + 1 ) e. NN0 ) |
40 |
28 39
|
eqeltrd |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) e. NN0 ) |
41 |
10
|
lep1d |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) <_ ( ( I + 1 ) + 1 ) ) |
42 |
41 28
|
breqtrrd |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) <_ ( I + 2 ) ) |
43 |
|
elfz2nn0 |
|- ( ( I + 1 ) e. ( 0 ... ( I + 2 ) ) <-> ( ( I + 1 ) e. NN0 /\ ( I + 2 ) e. NN0 /\ ( I + 1 ) <_ ( I + 2 ) ) ) |
44 |
9 40 42 43
|
syl3anbrc |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( 0 ... ( I + 2 ) ) ) |
45 |
|
fzofzp1 |
|- ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
46 |
45
|
3ad2ant3 |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
47 |
28 46
|
eqeltrd |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
48 |
|
ccatswrd |
|- ( ( W e. Word A /\ ( I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( I + 2 ) ) /\ ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( W substr <. I , ( I + 2 ) >. ) ) |
49 |
2 37 44 47 48
|
syl13anc |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( W substr <. I , ( I + 2 ) >. ) ) |
50 |
35 49
|
eqtr2d |
|- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) |