| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzelz |
|- ( N e. ( 2 ... ( # ` W ) ) -> N e. ZZ ) |
| 2 |
1
|
zcnd |
|- ( N e. ( 2 ... ( # ` W ) ) -> N e. CC ) |
| 3 |
|
2cnd |
|- ( N e. ( 2 ... ( # ` W ) ) -> 2 e. CC ) |
| 4 |
2 3
|
npcand |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 2 ) = N ) |
| 5 |
4
|
eqcomd |
|- ( N e. ( 2 ... ( # ` W ) ) -> N = ( ( N - 2 ) + 2 ) ) |
| 6 |
5
|
opeq2d |
|- ( N e. ( 2 ... ( # ` W ) ) -> <. ( N - 2 ) , N >. = <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) |
| 7 |
6
|
oveq2d |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( W substr <. ( N - 2 ) , N >. ) = ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) ) |
| 8 |
7
|
adantl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , N >. ) = ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) ) |
| 9 |
|
simpl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> W e. Word V ) |
| 10 |
|
elfzuz |
|- ( N e. ( 2 ... ( # ` W ) ) -> N e. ( ZZ>= ` 2 ) ) |
| 11 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) |
| 12 |
10 11
|
syl |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( N - 2 ) e. NN0 ) |
| 13 |
12
|
adantl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( N - 2 ) e. NN0 ) |
| 14 |
|
1cnd |
|- ( N e. ( 2 ... ( # ` W ) ) -> 1 e. CC ) |
| 15 |
2 3 14
|
subsubd |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( N - ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) ) |
| 16 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 17 |
16
|
oveq2i |
|- ( N - ( 2 - 1 ) ) = ( N - 1 ) |
| 18 |
15 17
|
eqtr3di |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) |
| 19 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 20 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( # ` W ) ) C_ ( 1 ... ( # ` W ) ) ) |
| 21 |
19 20
|
ax-mp |
|- ( 2 ... ( # ` W ) ) C_ ( 1 ... ( # ` W ) ) |
| 22 |
21
|
sseli |
|- ( N e. ( 2 ... ( # ` W ) ) -> N e. ( 1 ... ( # ` W ) ) ) |
| 23 |
|
fz1fzo0m1 |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 24 |
22 23
|
syl |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 25 |
18 24
|
eqeltrd |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 26 |
25
|
adantl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 27 |
|
swrds2 |
|- ( ( W e. Word V /\ ( N - 2 ) e. NN0 /\ ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> ) |
| 28 |
9 13 26 27
|
syl3anc |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> ) |
| 29 |
|
eqidd |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W ` ( N - 2 ) ) = ( W ` ( N - 2 ) ) ) |
| 30 |
18
|
fveq2d |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( W ` ( ( N - 2 ) + 1 ) ) = ( W ` ( N - 1 ) ) ) |
| 31 |
30
|
adantl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W ` ( ( N - 2 ) + 1 ) ) = ( W ` ( N - 1 ) ) ) |
| 32 |
29 31
|
s2eqd |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) |
| 33 |
8 28 32
|
3eqtrd |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , N >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) |