| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orc |  | 
						
							| 2 | 1 | a1d |  | 
						
							| 3 |  | eliun |  | 
						
							| 4 |  | velsn |  | 
						
							| 5 |  | eqeq1 |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | s3cli |  | 
						
							| 8 |  | elex |  | 
						
							| 9 |  | elex |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 8 10 | anim12ci |  | 
						
							| 12 |  | elex |  | 
						
							| 13 | 12 | adantl |  | 
						
							| 14 | 11 13 | anim12i |  | 
						
							| 15 |  | df-3an |  | 
						
							| 16 | 14 15 | sylibr |  | 
						
							| 17 |  | eqwrds3 |  | 
						
							| 18 | 7 16 17 | sylancr |  | 
						
							| 19 |  | s3fv0 |  | 
						
							| 20 | 19 | elv |  | 
						
							| 21 |  | simp1 |  | 
						
							| 22 | 20 21 | eqtr3id |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 18 23 | biimtrdi |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 6 25 | sylbid |  | 
						
							| 27 | 26 | ancoms |  | 
						
							| 28 | 27 | con3d |  | 
						
							| 29 | 28 | exp32 |  | 
						
							| 30 | 29 | com14 |  | 
						
							| 31 | 30 | imp |  | 
						
							| 32 | 31 | expd |  | 
						
							| 33 | 32 | com34 |  | 
						
							| 34 | 33 | imp |  | 
						
							| 35 | 4 34 | biimtrid |  | 
						
							| 36 | 35 | imp |  | 
						
							| 37 | 36 | imp |  | 
						
							| 38 |  | velsn |  | 
						
							| 39 | 37 38 | sylnibr |  | 
						
							| 40 | 39 | nrexdv |  | 
						
							| 41 |  | eliun |  | 
						
							| 42 | 40 41 | sylnibr |  | 
						
							| 43 | 42 | rexlimdva2 |  | 
						
							| 44 | 3 43 | biimtrid |  | 
						
							| 45 | 44 | ralrimiv |  | 
						
							| 46 |  | eqidd |  | 
						
							| 47 |  | eqidd |  | 
						
							| 48 |  | id |  | 
						
							| 49 | 46 47 48 | s3eqd |  | 
						
							| 50 | 49 | sneqd |  | 
						
							| 51 | 50 | cbviunv |  | 
						
							| 52 | 51 | eleq2i |  | 
						
							| 53 | 52 | notbii |  | 
						
							| 54 | 53 | ralbii |  | 
						
							| 55 | 45 54 | sylibr |  | 
						
							| 56 |  | disj |  | 
						
							| 57 | 55 56 | sylibr |  | 
						
							| 58 | 57 | olcd |  | 
						
							| 59 | 58 | ex |  | 
						
							| 60 | 2 59 | pm2.61i |  | 
						
							| 61 | 60 | ralrimivva |  | 
						
							| 62 |  | sneq |  | 
						
							| 63 | 62 | difeq2d |  | 
						
							| 64 |  | id |  | 
						
							| 65 |  | eqidd |  | 
						
							| 66 |  | eqidd |  | 
						
							| 67 | 64 65 66 | s3eqd |  | 
						
							| 68 | 67 | sneqd |  | 
						
							| 69 | 63 68 | disjiunb |  | 
						
							| 70 | 61 69 | sylibr |  |