Metamath Proof Explorer


Theorem disjiunb

Description: Two ways to say that a collection of index unions C ( i , x ) for i e. A and x e. B is disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjiunb.1 i=jB=D
disjiunb.2 i=jC=E
Assertion disjiunb DisjiAxBCiAjAi=jxBCxDE=

Proof

Step Hyp Ref Expression
1 disjiunb.1 i=jB=D
2 disjiunb.2 i=jC=E
3 1 2 iuneq12d i=jxBC=xDE
4 3 disjor DisjiAxBCiAjAi=jxBCxDE=