Metamath Proof Explorer


Theorem disjor

Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypothesis disjor.1 i=jB=C
Assertion disjor DisjiABiAjAi=jBC=

Proof

Step Hyp Ref Expression
1 disjor.1 i=jB=C
2 df-disj DisjiABx*iAxB
3 ralcom4 iAxjAxBxCi=jxiAjAxBxCi=j
4 orcom i=jBC=BC=i=j
5 df-or BC=i=j¬BC=i=j
6 neq0 ¬BC=xxBC
7 elin xBCxBxC
8 7 exbii xxBCxxBxC
9 6 8 bitri ¬BC=xxBxC
10 9 imbi1i ¬BC=i=jxxBxCi=j
11 19.23v xxBxCi=jxxBxCi=j
12 10 11 bitr4i ¬BC=i=jxxBxCi=j
13 4 5 12 3bitri i=jBC=xxBxCi=j
14 13 ralbii jAi=jBC=jAxxBxCi=j
15 ralcom4 jAxxBxCi=jxjAxBxCi=j
16 14 15 bitri jAi=jBC=xjAxBxCi=j
17 16 ralbii iAjAi=jBC=iAxjAxBxCi=j
18 1 eleq2d i=jxBxC
19 18 rmo4 *iAxBiAjAxBxCi=j
20 19 albii x*iAxBxiAjAxBxCi=j
21 3 17 20 3bitr4i iAjAi=jBC=x*iAxB
22 2 21 bitr4i DisjiABiAjAi=jBC=