Metamath Proof Explorer


Theorem disjors

Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjors DisjxABiAjAi=ji/xBj/xB=

Proof

Step Hyp Ref Expression
1 nfcv _iB
2 nfcsb1v _xi/xB
3 csbeq1a x=iB=i/xB
4 1 2 3 cbvdisj DisjxABDisjiAi/xB
5 csbeq1 i=ji/xB=j/xB
6 5 disjor DisjiAi/xBiAjAi=ji/xBj/xB=
7 4 6 bitri DisjxABiAjAi=ji/xBj/xB=