Metamath Proof Explorer


Theorem disji2

Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D , and X =/= Y , then C and D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disji.1 x=XB=C
disji.2 x=YB=D
Assertion disji2 DisjxABXAYAXYCD=

Proof

Step Hyp Ref Expression
1 disji.1 x=XB=C
2 disji.2 x=YB=D
3 df-ne XY¬X=Y
4 disjors DisjxAByAzAy=zy/xBz/xB=
5 eqeq1 y=Xy=zX=z
6 nfcv _xX
7 nfcv _xC
8 6 7 1 csbhypf y=Xy/xB=C
9 8 ineq1d y=Xy/xBz/xB=Cz/xB
10 9 eqeq1d y=Xy/xBz/xB=Cz/xB=
11 5 10 orbi12d y=Xy=zy/xBz/xB=X=zCz/xB=
12 eqeq2 z=YX=zX=Y
13 nfcv _xY
14 nfcv _xD
15 13 14 2 csbhypf z=Yz/xB=D
16 15 ineq2d z=YCz/xB=CD
17 16 eqeq1d z=YCz/xB=CD=
18 12 17 orbi12d z=YX=zCz/xB=X=YCD=
19 11 18 rspc2v XAYAyAzAy=zy/xBz/xB=X=YCD=
20 4 19 biimtrid XAYADisjxABX=YCD=
21 20 impcom DisjxABXAYAX=YCD=
22 21 ord DisjxABXAYA¬X=YCD=
23 3 22 biimtrid DisjxABXAYAXYCD=
24 23 3impia DisjxABXAYAXYCD=