Metamath Proof Explorer


Theorem disji

Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D have a common element Z , then X = Y . (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disji.1 x=XB=C
disji.2 x=YB=D
Assertion disji DisjxABXAYAZCZDX=Y

Proof

Step Hyp Ref Expression
1 disji.1 x=XB=C
2 disji.2 x=YB=D
3 inelcm ZCZDCD
4 1 2 disji2 DisjxABXAYAXYCD=
5 4 3expia DisjxABXAYAXYCD=
6 5 necon1d DisjxABXAYACDX=Y
7 6 3impia DisjxABXAYACDX=Y
8 3 7 syl3an3 DisjxABXAYAZCZDX=Y