Metamath Proof Explorer


Theorem invdisj

Description: If there is a function C ( y ) such that C ( y ) = x for all y e. B ( x ) , then the sets B ( x ) for distinct x e. A are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016)

Ref Expression
Assertion invdisj x A y B C = x Disj x A B

Proof

Step Hyp Ref Expression
1 nfra2w y x A y B C = x
2 df-ral x A y B C = x x x A y B C = x
3 rsp y B C = x y B C = x
4 eqcom C = x x = C
5 3 4 syl6ib y B C = x y B x = C
6 5 imim2i x A y B C = x x A y B x = C
7 6 impd x A y B C = x x A y B x = C
8 7 alimi x x A y B C = x x x A y B x = C
9 2 8 sylbi x A y B C = x x x A y B x = C
10 mo2icl x x A y B x = C * x x A y B
11 9 10 syl x A y B C = x * x x A y B
12 1 11 alrimi x A y B C = x y * x x A y B
13 dfdisj2 Disj x A B y * x x A y B
14 12 13 sylibr x A y B C = x Disj x A B