Metamath Proof Explorer


Theorem csbhypf

Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf for class substitution version. (Contributed by NM, 19-Dec-2008)

Ref Expression
Hypotheses csbhypf.1 _ x A
csbhypf.2 _ x C
csbhypf.3 x = A B = C
Assertion csbhypf y = A y / x B = C

Proof

Step Hyp Ref Expression
1 csbhypf.1 _ x A
2 csbhypf.2 _ x C
3 csbhypf.3 x = A B = C
4 1 nfeq2 x y = A
5 nfcsb1v _ x y / x B
6 5 2 nfeq x y / x B = C
7 4 6 nfim x y = A y / x B = C
8 eqeq1 x = y x = A y = A
9 csbeq1a x = y B = y / x B
10 9 eqeq1d x = y B = C y / x B = C
11 8 10 imbi12d x = y x = A B = C y = A y / x B = C
12 7 11 3 chvarfv y = A y / x B = C