Metamath Proof Explorer


Theorem sbhypf

Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004) (Proof shortened by Wolf Lammen, 25-Jan-2025)

Ref Expression
Hypotheses sbhypf.1 xψ
sbhypf.2 x=Aφψ
Assertion sbhypf y=Ayxφψ

Proof

Step Hyp Ref Expression
1 sbhypf.1 xψ
2 sbhypf.2 x=Aφψ
3 2 sbimi yxx=Ayxφψ
4 eqsb1 yxx=Ay=A
5 1 sbf yxψψ
6 5 sblbis yxφψyxφψ
7 3 4 6 3imtr3i y=Ayxφψ