Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004) (Proof shortened by Wolf Lammen, 25-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbhypf.1 | |
|
sbhypf.2 | |
||
Assertion | sbhypf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbhypf.1 | |
|
2 | sbhypf.2 | |
|
3 | 2 | sbimi | |
4 | eqsb1 | |
|
5 | 1 | sbf | |
6 | 5 | sblbis | |
7 | 3 4 6 | 3imtr3i | |