Metamath Proof Explorer


Theorem csbiebt

Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf .) (Contributed by NM, 11-Nov-2005)

Ref Expression
Assertion csbiebt A V _ x C x x = A B = C A / x B = C

Proof

Step Hyp Ref Expression
1 elex A V A V
2 spsbc A V x x = A B = C [˙A / x]˙ x = A B = C
3 2 adantr A V _ x C x x = A B = C [˙A / x]˙ x = A B = C
4 simpl A V _ x C A V
5 biimt x = A B = C x = A B = C
6 csbeq1a x = A B = A / x B
7 6 eqeq1d x = A B = C A / x B = C
8 5 7 bitr3d x = A x = A B = C A / x B = C
9 8 adantl A V _ x C x = A x = A B = C A / x B = C
10 nfv x A V
11 nfnfc1 x _ x C
12 10 11 nfan x A V _ x C
13 nfcsb1v _ x A / x B
14 13 a1i A V _ x C _ x A / x B
15 simpr A V _ x C _ x C
16 14 15 nfeqd A V _ x C x A / x B = C
17 4 9 12 16 sbciedf A V _ x C [˙A / x]˙ x = A B = C A / x B = C
18 3 17 sylibd A V _ x C x x = A B = C A / x B = C
19 13 a1i _ x C _ x A / x B
20 id _ x C _ x C
21 19 20 nfeqd _ x C x A / x B = C
22 11 21 nfan1 x _ x C A / x B = C
23 7 biimprcd A / x B = C x = A B = C
24 23 adantl _ x C A / x B = C x = A B = C
25 22 24 alrimi _ x C A / x B = C x x = A B = C
26 25 ex _ x C A / x B = C x x = A B = C
27 26 adantl A V _ x C A / x B = C x x = A B = C
28 18 27 impbid A V _ x C x x = A B = C A / x B = C
29 1 28 sylan A V _ x C x x = A B = C A / x B = C