Metamath Proof Explorer


Theorem csbiegf

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbiegf.1 A V _ x C
csbiegf.2 x = A B = C
Assertion csbiegf A V A / x B = C

Proof

Step Hyp Ref Expression
1 csbiegf.1 A V _ x C
2 csbiegf.2 x = A B = C
3 2 ax-gen x x = A B = C
4 csbiebt A V _ x C x x = A B = C A / x B = C
5 1 4 mpdan A V x x = A B = C A / x B = C
6 3 5 mpbii A V A / x B = C