Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
csbiegf
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit substitution into a
class. (Contributed by NM , 11-Nov-2005) (Revised by Mario Carneiro , 13-Oct-2016)
Ref
Expression
Hypotheses
csbiegf.1
⊢ ( 𝐴 ∈ 𝑉 → Ⅎ 𝑥 𝐶 )
csbiegf.2
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 )
Assertion
csbiegf
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 )
Proof
Step
Hyp
Ref
Expression
1
csbiegf.1
⊢ ( 𝐴 ∈ 𝑉 → Ⅎ 𝑥 𝐶 )
2
csbiegf.2
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 )
3
2
ax-gen
⊢ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 )
4
csbiebt
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) )
5
1 4
mpdan
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) )
6
3 5
mpbii
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 )