Metamath Proof Explorer


Theorem csbiegf

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbiegf.1 ( 𝐴𝑉 𝑥 𝐶 )
csbiegf.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion csbiegf ( 𝐴𝑉 𝐴 / 𝑥 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 csbiegf.1 ( 𝐴𝑉 𝑥 𝐶 )
2 csbiegf.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
3 2 ax-gen 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 )
4 csbiebt ( ( 𝐴𝑉 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )
5 1 4 mpdan ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )
6 3 5 mpbii ( 𝐴𝑉 𝐴 / 𝑥 𝐵 = 𝐶 )