Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - start with the Axiom of Extensionality  
				Proper substitution of classes for sets into classes  
				csbief  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by NM , 26-Nov-2005)   (Revised by Mario Carneiro , 13-Oct-2016) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						csbief.1  
						⊢  𝐴   ∈  V  
					 
					
						 
						 
						csbief.2  
						⊢  Ⅎ  𝑥  𝐶   
					 
					
						 
						 
						csbief.3  
						⊢  ( 𝑥   =  𝐴   →  𝐵   =  𝐶  )  
					 
				
					 
					Assertion 
					csbief  
					⊢   ⦋  𝐴   /  𝑥  ⦌  𝐵   =  𝐶   
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							csbief.1  
							⊢  𝐴   ∈  V  
						 
						
							2  
							
								
							 
							csbief.2  
							⊢  Ⅎ  𝑥  𝐶   
						 
						
							3  
							
								
							 
							csbief.3  
							⊢  ( 𝑥   =  𝐴   →  𝐵   =  𝐶  )  
						 
						
							4  
							
								2 
							 
							a1i  
							⊢  ( 𝐴   ∈  V  →  Ⅎ  𝑥  𝐶  )  
						 
						
							5  
							
								4  3 
							 
							csbiegf  
							⊢  ( 𝐴   ∈  V  →  ⦋  𝐴   /  𝑥  ⦌  𝐵   =  𝐶  )  
						 
						
							6  
							
								1  5 
							 
							ax-mp  
							⊢  ⦋  𝐴   /  𝑥  ⦌  𝐵   =  𝐶