Metamath Proof Explorer


Theorem csbiedf

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbiedf.1 xφ
csbiedf.2 φ_xC
csbiedf.3 φAV
csbiedf.4 φx=AB=C
Assertion csbiedf φA/xB=C

Proof

Step Hyp Ref Expression
1 csbiedf.1 xφ
2 csbiedf.2 φ_xC
3 csbiedf.3 φAV
4 csbiedf.4 φx=AB=C
5 4 ex φx=AB=C
6 1 5 alrimi φxx=AB=C
7 csbiebt AV_xCxx=AB=CA/xB=C
8 3 2 7 syl2anc φxx=AB=CA/xB=C
9 6 8 mpbid φA/xB=C