Metamath Proof Explorer


Definition df-disj

Description: A collection of classes B ( x ) is disjoint when for each element y , it is in B ( x ) for at most one x . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion df-disj DisjxABy*xAyB

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvarx
1 cA classA
2 cB classB
3 0 1 2 wdisj wffDisjxAB
4 vy setvary
5 4 cv setvary
6 5 2 wcel wffyB
7 6 0 1 wrmo wff*xAyB
8 7 4 wal wffy*xAyB
9 3 8 wb wffDisjxABy*xAyB