Metamath Proof Explorer


Theorem iuneq12d

Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015)

Ref Expression
Hypotheses iuneq1d.1 φA=B
iuneq12d.2 φC=D
Assertion iuneq12d φxAC=xBD

Proof

Step Hyp Ref Expression
1 iuneq1d.1 φA=B
2 iuneq12d.2 φC=D
3 1 iuneq1d φxAC=xBC
4 2 adantr φxBC=D
5 4 iuneq2dv φxBC=xBD
6 3 5 eqtrd φxAC=xBD