Metamath Proof Explorer


Theorem iuneq2d

Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015)

Ref Expression
Hypothesis iuneq2d.2 φB=C
Assertion iuneq2d φxAB=xAC

Proof

Step Hyp Ref Expression
1 iuneq2d.2 φB=C
2 1 adantr φxAB=C
3 2 iuneq2dv φxAB=xAC