Metamath Proof Explorer


Theorem iuneq2dv

Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004)

Ref Expression
Hypothesis iuneq2dv.1 φxAB=C
Assertion iuneq2dv φxAB=xAC

Proof

Step Hyp Ref Expression
1 iuneq2dv.1 φxAB=C
2 1 ralrimiva φxAB=C
3 iuneq2 xAB=CxAB=xAC
4 2 3 syl φxAB=xAC