| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iuneq12d.1 |  |-  ( ph -> A = B ) | 
						
							| 2 |  | iuneq12d.2 |  |-  ( ph -> C = D ) | 
						
							| 3 | 1 | eleq2d |  |-  ( ph -> ( x e. A <-> x e. B ) ) | 
						
							| 4 | 3 | anbi1d |  |-  ( ph -> ( ( x e. A /\ t e. C ) <-> ( x e. B /\ t e. C ) ) ) | 
						
							| 5 | 4 | rexbidv2 |  |-  ( ph -> ( E. x e. A t e. C <-> E. x e. B t e. C ) ) | 
						
							| 6 | 5 | abbidv |  |-  ( ph -> { t | E. x e. A t e. C } = { t | E. x e. B t e. C } ) | 
						
							| 7 |  | df-iun |  |-  U_ x e. A C = { t | E. x e. A t e. C } | 
						
							| 8 |  | df-iun |  |-  U_ x e. B C = { t | E. x e. B t e. C } | 
						
							| 9 | 6 7 8 | 3eqtr4g |  |-  ( ph -> U_ x e. A C = U_ x e. B C ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ x e. B ) -> C = D ) | 
						
							| 11 | 10 | iuneq2dv |  |-  ( ph -> U_ x e. B C = U_ x e. B D ) | 
						
							| 12 | 9 11 | eqtrd |  |-  ( ph -> U_ x e. A C = U_ x e. B D ) |