Metamath Proof Explorer


Theorem disj

Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004) Avoid ax-10 , ax-11 , ax-12 . (Revised by GG, 28-Jun-2024)

Ref Expression
Assertion disj A B = x A ¬ x B

Proof

Step Hyp Ref Expression
1 df-in A B = y | y A y B
2 1 eqeq1i A B = y | y A y B =
3 eleq1w y = x y A x A
4 eleq1w y = x y B x B
5 3 4 anbi12d y = x y A y B x A x B
6 5 eqabcbw y | y A y B = x x A x B x
7 imnan x A ¬ x B ¬ x A x B
8 noel ¬ x
9 8 nbn ¬ x A x B x A x B x
10 7 9 bitr2i x A x B x x A ¬ x B
11 10 albii x x A x B x x x A ¬ x B
12 2 6 11 3bitri A B = x x A ¬ x B
13 df-ral x A ¬ x B x x A ¬ x B
14 12 13 bitr4i A B = x A ¬ x B