Metamath Proof Explorer


Theorem eliun

Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003)

Ref Expression
Assertion eliun AxBCxBAC

Proof

Step Hyp Ref Expression
1 elex AxBCAV
2 elex ACAV
3 2 rexlimivw xBACAV
4 eleq1 y=AyCAC
5 4 rexbidv y=AxByCxBAC
6 df-iun xBC=y|xByC
7 5 6 elab2g AVAxBCxBAC
8 1 3 7 pm5.21nii AxBCxBAC