Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
eliun
Next ⟩
eliin
Metamath Proof Explorer
Ascii
Unicode
Theorem
eliun
Description:
Membership in indexed union.
(Contributed by
NM
, 3-Sep-2003)
Ref
Expression
Assertion
eliun
⊢
A
∈
⋃
x
∈
B
C
↔
∃
x
∈
B
A
∈
C
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
⋃
x
∈
B
C
→
A
∈
V
2
elex
⊢
A
∈
C
→
A
∈
V
3
2
rexlimivw
⊢
∃
x
∈
B
A
∈
C
→
A
∈
V
4
eleq1
⊢
y
=
A
→
y
∈
C
↔
A
∈
C
5
4
rexbidv
⊢
y
=
A
→
∃
x
∈
B
y
∈
C
↔
∃
x
∈
B
A
∈
C
6
df-iun
⊢
⋃
x
∈
B
C
=
y
|
∃
x
∈
B
y
∈
C
7
5
6
elab2g
⊢
A
∈
V
→
A
∈
⋃
x
∈
B
C
↔
∃
x
∈
B
A
∈
C
8
1
3
7
pm5.21nii
⊢
A
∈
⋃
x
∈
B
C
↔
∃
x
∈
B
A
∈
C