Metamath Proof Explorer


Theorem eliun

Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003)

Ref Expression
Assertion eliun A x B C x B A C

Proof

Step Hyp Ref Expression
1 elex A x B C A V
2 elex A C A V
3 2 rexlimivw x B A C A V
4 eleq1 y = A y C A C
5 4 rexbidv y = A x B y C x B A C
6 df-iun x B C = y | x B y C
7 5 6 elab2g A V A x B C x B A C
8 1 3 7 pm5.21nii A x B C x B A C