Metamath Proof Explorer


Theorem eliin

Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003)

Ref Expression
Assertion eliin AVAxBCxBAC

Proof

Step Hyp Ref Expression
1 eleq1 y=AyCAC
2 1 ralbidv y=AxByCxBAC
3 df-iin xBC=y|xByC
4 2 3 elab2g AVAxBCxBAC