Metamath Proof Explorer


Theorem s5eqd

Description: Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 φA=N
s2eqd.2 φB=O
s3eqd.3 φC=P
s4eqd.4 φD=Q
s5eqd.5 φE=R
Assertion s5eqd φ⟨“ABCDE”⟩=⟨“NOPQR”⟩

Proof

Step Hyp Ref Expression
1 s2eqd.1 φA=N
2 s2eqd.2 φB=O
3 s3eqd.3 φC=P
4 s4eqd.4 φD=Q
5 s5eqd.5 φE=R
6 1 2 3 4 s4eqd φ⟨“ABCD”⟩=⟨“NOPQ”⟩
7 5 s1eqd φ⟨“E”⟩=⟨“R”⟩
8 6 7 oveq12d φ⟨“ABCD”⟩++⟨“E”⟩=⟨“NOPQ”⟩++⟨“R”⟩
9 df-s5 ⟨“ABCDE”⟩=⟨“ABCD”⟩++⟨“E”⟩
10 df-s5 ⟨“NOPQR”⟩=⟨“NOPQ”⟩++⟨“R”⟩
11 8 9 10 3eqtr4g φ⟨“ABCDE”⟩=⟨“NOPQR”⟩