Metamath Proof Explorer


Theorem wrd3tpop

Description: A word of length three represented as triple of ordered pairs. (Contributed by AV, 26-Jan-2021)

Ref Expression
Assertion wrd3tpop WWordVW=3W=0W01W12W2

Proof

Step Hyp Ref Expression
1 wrdfn WWordVWFn0..^W
2 1 adantr WWordVW=3WFn0..^W
3 oveq2 W=30..^W=0..^3
4 fzo0to3tp 0..^3=012
5 3 4 eqtr2di W=3012=0..^W
6 5 adantl WWordVW=3012=0..^W
7 6 fneq2d WWordVW=3WFn012WFn0..^W
8 2 7 mpbird WWordVW=3WFn012
9 c0ex 0V
10 1ex 1V
11 2ex 2V
12 9 10 11 fntpb WFn012W=0W01W12W2
13 8 12 sylib WWordVW=3W=0W01W12W2