Metamath Proof Explorer


Theorem wrdlen3s3

Description: A word of length three as length 3 string. (Contributed by AV, 26-Jan-2021)

Ref Expression
Assertion wrdlen3s3 WWordVW=3W=⟨“W0W1W2”⟩

Proof

Step Hyp Ref Expression
1 wrd3tpop WWordVW=3W=0W01W12W2
2 fvex W0V
3 fvex W1V
4 fvex W2V
5 s3tpop W0VW1VW2V⟨“W0W1W2”⟩=0W01W12W2
6 5 eqcomd W0VW1VW2V0W01W12W2=⟨“W0W1W2”⟩
7 2 3 4 6 mp3an 0W01W12W2=⟨“W0W1W2”⟩
8 1 7 eqtrdi WWordVW=3W=⟨“W0W1W2”⟩