| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdfn |
⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 3 ) ) |
| 4 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 5 |
3 4
|
eqtr2di |
⊢ ( ( ♯ ‘ 𝑊 ) = 3 → { 0 , 1 , 2 } = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → { 0 , 1 , 2 } = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 |
6
|
fneq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( 𝑊 Fn { 0 , 1 , 2 } ↔ 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 |
2 7
|
mpbird |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → 𝑊 Fn { 0 , 1 , 2 } ) |
| 9 |
|
c0ex |
⊢ 0 ∈ V |
| 10 |
|
1ex |
⊢ 1 ∈ V |
| 11 |
|
2ex |
⊢ 2 ∈ V |
| 12 |
9 10 11
|
fntpb |
⊢ ( 𝑊 Fn { 0 , 1 , 2 } ↔ 𝑊 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 , 〈 2 , ( 𝑊 ‘ 2 ) 〉 } ) |
| 13 |
8 12
|
sylib |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → 𝑊 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 , 〈 2 , ( 𝑊 ‘ 2 ) 〉 } ) |