| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3z |
⊢ 3 ∈ ℤ |
| 2 |
|
fzoval |
⊢ ( 3 ∈ ℤ → ( 0 ..^ 3 ) = ( 0 ... ( 3 − 1 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 0 ..^ 3 ) = ( 0 ... ( 3 − 1 ) ) |
| 4 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 5 |
|
2cn |
⊢ 2 ∈ ℂ |
| 6 |
5
|
addlidi |
⊢ ( 0 + 2 ) = 2 |
| 7 |
4 6
|
eqtr4i |
⊢ ( 3 − 1 ) = ( 0 + 2 ) |
| 8 |
7
|
oveq2i |
⊢ ( 0 ... ( 3 − 1 ) ) = ( 0 ... ( 0 + 2 ) ) |
| 9 |
|
0z |
⊢ 0 ∈ ℤ |
| 10 |
|
fztp |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } ) |
| 11 |
|
eqidd |
⊢ ( 0 ∈ ℤ → 0 = 0 ) |
| 12 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 13 |
12
|
a1i |
⊢ ( 0 ∈ ℤ → ( 0 + 1 ) = 1 ) |
| 14 |
6
|
a1i |
⊢ ( 0 ∈ ℤ → ( 0 + 2 ) = 2 ) |
| 15 |
11 13 14
|
tpeq123d |
⊢ ( 0 ∈ ℤ → { 0 , ( 0 + 1 ) , ( 0 + 2 ) } = { 0 , 1 , 2 } ) |
| 16 |
10 15
|
eqtrd |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 } ) |
| 17 |
9 16
|
ax-mp |
⊢ ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 } |
| 18 |
3 8 17
|
3eqtri |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |