| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3z |
|- 3 e. ZZ |
| 2 |
|
fzoval |
|- ( 3 e. ZZ -> ( 0 ..^ 3 ) = ( 0 ... ( 3 - 1 ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( 0 ..^ 3 ) = ( 0 ... ( 3 - 1 ) ) |
| 4 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 5 |
|
2cn |
|- 2 e. CC |
| 6 |
5
|
addlidi |
|- ( 0 + 2 ) = 2 |
| 7 |
4 6
|
eqtr4i |
|- ( 3 - 1 ) = ( 0 + 2 ) |
| 8 |
7
|
oveq2i |
|- ( 0 ... ( 3 - 1 ) ) = ( 0 ... ( 0 + 2 ) ) |
| 9 |
|
0z |
|- 0 e. ZZ |
| 10 |
|
fztp |
|- ( 0 e. ZZ -> ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } ) |
| 11 |
|
eqidd |
|- ( 0 e. ZZ -> 0 = 0 ) |
| 12 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 13 |
12
|
a1i |
|- ( 0 e. ZZ -> ( 0 + 1 ) = 1 ) |
| 14 |
6
|
a1i |
|- ( 0 e. ZZ -> ( 0 + 2 ) = 2 ) |
| 15 |
11 13 14
|
tpeq123d |
|- ( 0 e. ZZ -> { 0 , ( 0 + 1 ) , ( 0 + 2 ) } = { 0 , 1 , 2 } ) |
| 16 |
10 15
|
eqtrd |
|- ( 0 e. ZZ -> ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 } ) |
| 17 |
9 16
|
ax-mp |
|- ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 } |
| 18 |
3 8 17
|
3eqtri |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |