Metamath Proof Explorer


Theorem fzoval

Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fzoval ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑚 = 𝑀𝑚 = 𝑀 )
2 oveq1 ( 𝑛 = 𝑁 → ( 𝑛 − 1 ) = ( 𝑁 − 1 ) )
3 1 2 oveqan12d ( ( 𝑚 = 𝑀𝑛 = 𝑁 ) → ( 𝑚 ... ( 𝑛 − 1 ) ) = ( 𝑀 ... ( 𝑁 − 1 ) ) )
4 df-fzo ..^ = ( 𝑚 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( 𝑚 ... ( 𝑛 − 1 ) ) )
5 ovex ( 𝑀 ... ( 𝑁 − 1 ) ) ∈ V
6 3 4 5 ovmpoa ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) )
7 simpl ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ )
8 7 con3i ( ¬ 𝑀 ∈ ℤ → ¬ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
9 fzof ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ
10 9 fdmi dom ..^ = ( ℤ × ℤ )
11 10 ndmov ( ¬ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ∅ )
12 8 11 syl ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ∅ )
13 simpl ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → 𝑀 ∈ ℤ )
14 13 con3i ( ¬ 𝑀 ∈ ℤ → ¬ ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) )
15 fzf ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ
16 15 fdmi dom ... = ( ℤ × ℤ )
17 16 ndmov ( ¬ ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ )
18 14 17 syl ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ )
19 12 18 eqtr4d ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) )
20 19 adantr ( ( ¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) )
21 6 20 pm2.61ian ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) )