Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑚 = 𝑀 → 𝑚 = 𝑀 ) |
2 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 1 ) = ( 𝑁 − 1 ) ) |
3 |
1 2
|
oveqan12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) → ( 𝑚 ... ( 𝑛 − 1 ) ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
4 |
|
df-fzo |
⊢ ..^ = ( 𝑚 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( 𝑚 ... ( 𝑛 − 1 ) ) ) |
5 |
|
ovex |
⊢ ( 𝑀 ... ( 𝑁 − 1 ) ) ∈ V |
6 |
3 4 5
|
ovmpoa |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
8 |
|
fzof |
⊢ ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ |
9 |
8
|
fdmi |
⊢ dom ..^ = ( ℤ × ℤ ) |
10 |
9
|
ndmov |
⊢ ( ¬ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ∅ ) |
11 |
7 10
|
nsyl5 |
⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ∅ ) |
12 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → 𝑀 ∈ ℤ ) |
13 |
|
fzf |
⊢ ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ |
14 |
13
|
fdmi |
⊢ dom ... = ( ℤ × ℤ ) |
15 |
14
|
ndmov |
⊢ ( ¬ ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ ) |
16 |
12 15
|
nsyl5 |
⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ ) |
17 |
11 16
|
eqtr4d |
⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( ¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
19 |
6 18
|
pm2.61ian |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |