| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							id | 
							⊢ ( 𝑚  =  𝑀  →  𝑚  =  𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝑛  −  1 )  =  ( 𝑁  −  1 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							oveqan12d | 
							⊢ ( ( 𝑚  =  𝑀  ∧  𝑛  =  𝑁 )  →  ( 𝑚 ... ( 𝑛  −  1 ) )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							df-fzo | 
							⊢ ..^  =  ( 𝑚  ∈  ℤ ,  𝑛  ∈  ℤ  ↦  ( 𝑚 ... ( 𝑛  −  1 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑀 ... ( 𝑁  −  1 ) )  ∈  V  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							ovmpoa | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 8 | 
							
								
							 | 
							fzof | 
							⊢ ..^ : ( ℤ  ×  ℤ ) ⟶ 𝒫  ℤ  | 
						
						
							| 9 | 
							
								8
							 | 
							fdmi | 
							⊢ dom  ..^  =  ( ℤ  ×  ℤ )  | 
						
						
							| 10 | 
							
								9
							 | 
							ndmov | 
							⊢ ( ¬  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀 ..^ 𝑁 )  =  ∅ )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							nsyl5 | 
							⊢ ( ¬  𝑀  ∈  ℤ  →  ( 𝑀 ..^ 𝑁 )  =  ∅ )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 13 | 
							
								
							 | 
							fzf | 
							⊢ ... : ( ℤ  ×  ℤ ) ⟶ 𝒫  ℤ  | 
						
						
							| 14 | 
							
								13
							 | 
							fdmi | 
							⊢ dom  ...  =  ( ℤ  ×  ℤ )  | 
						
						
							| 15 | 
							
								14
							 | 
							ndmov | 
							⊢ ( ¬  ( 𝑀  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  ( 𝑀 ... ( 𝑁  −  1 ) )  =  ∅ )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							nsyl5 | 
							⊢ ( ¬  𝑀  ∈  ℤ  →  ( 𝑀 ... ( 𝑁  −  1 ) )  =  ∅ )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							eqtr4d | 
							⊢ ( ¬  𝑀  ∈  ℤ  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( ¬  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) )  | 
						
						
							| 19 | 
							
								6 18
							 | 
							pm2.61ian | 
							⊢ ( 𝑁  ∈  ℤ  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) )  |