Metamath Proof Explorer


Theorem fzf

Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion fzf ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ

Proof

Step Hyp Ref Expression
1 zex ℤ ∈ V
2 ssrab2 { 𝑘 ∈ ℤ ∣ ( 𝑚𝑘𝑘𝑛 ) } ⊆ ℤ
3 1 2 elpwi2 { 𝑘 ∈ ℤ ∣ ( 𝑚𝑘𝑘𝑛 ) } ∈ 𝒫 ℤ
4 3 rgen2w 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ { 𝑘 ∈ ℤ ∣ ( 𝑚𝑘𝑘𝑛 ) } ∈ 𝒫 ℤ
5 df-fz ... = ( 𝑚 ∈ ℤ , 𝑛 ∈ ℤ ↦ { 𝑘 ∈ ℤ ∣ ( 𝑚𝑘𝑘𝑛 ) } )
6 5 fmpo ( ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ { 𝑘 ∈ ℤ ∣ ( 𝑚𝑘𝑘𝑛 ) } ∈ 𝒫 ℤ ↔ ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ )
7 4 6 mpbi ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ