Metamath Proof Explorer


Theorem fzf

Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion fzf :×𝒫

Proof

Step Hyp Ref Expression
1 zex V
2 ssrab2 k|mkkn
3 1 2 elpwi2 k|mkkn𝒫
4 3 rgen2w mnk|mkkn𝒫
5 df-fz =m,nk|mkkn
6 5 fmpo mnk|mkkn𝒫:×𝒫
7 4 6 mpbi :×𝒫