| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzval | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀 ... 𝑁 )  =  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) } )  | 
						
						
							| 2 | 
							
								1
							 | 
							eleq2d | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  𝐾  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) } ) )  | 
						
						
							| 3 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑗  =  𝐾  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  𝐾 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑗  =  𝐾  →  ( 𝑗  ≤  𝑁  ↔  𝐾  ≤  𝑁 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							anbi12d | 
							⊢ ( 𝑗  =  𝐾  →  ( ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  ↔  ( 𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							elrab | 
							⊢ ( 𝐾  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) }  ↔  ( 𝐾  ∈  ℤ  ∧  ( 𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 )  ↔  ( 𝐾  ∈  ℤ  ∧  ( 𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitr4i | 
							⊢ ( 𝐾  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) }  ↔  ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							bitrdi | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) ) )  |