Step |
Hyp |
Ref |
Expression |
1 |
|
fzval |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) } ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐾 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) } ) ) |
3 |
|
breq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝐾 ) ) |
4 |
|
breq1 |
⊢ ( 𝑗 = 𝐾 → ( 𝑗 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
6 |
5
|
elrab |
⊢ ( 𝐾 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) } ↔ ( 𝐾 ∈ ℤ ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
7 |
|
3anass |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
8 |
6 7
|
bitr4i |
⊢ ( 𝐾 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) } ↔ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) |
9 |
2 8
|
bitrdi |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |