| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑚  =  𝑀  →  ( 𝑚  ≤  𝑘  ↔  𝑀  ≤  𝑘 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							anbi1d | 
							⊢ ( 𝑚  =  𝑀  →  ( ( 𝑚  ≤  𝑘  ∧  𝑘  ≤  𝑛 )  ↔  ( 𝑀  ≤  𝑘  ∧  𝑘  ≤  𝑛 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rabbidv | 
							⊢ ( 𝑚  =  𝑀  →  { 𝑘  ∈  ℤ  ∣  ( 𝑚  ≤  𝑘  ∧  𝑘  ≤  𝑛 ) }  =  { 𝑘  ∈  ℤ  ∣  ( 𝑀  ≤  𝑘  ∧  𝑘  ≤  𝑛 ) } )  | 
						
						
							| 4 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝑘  ≤  𝑛  ↔  𝑘  ≤  𝑁 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							anbi2d | 
							⊢ ( 𝑛  =  𝑁  →  ( ( 𝑀  ≤  𝑘  ∧  𝑘  ≤  𝑛 )  ↔  ( 𝑀  ≤  𝑘  ∧  𝑘  ≤  𝑁 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rabbidv | 
							⊢ ( 𝑛  =  𝑁  →  { 𝑘  ∈  ℤ  ∣  ( 𝑀  ≤  𝑘  ∧  𝑘  ≤  𝑛 ) }  =  { 𝑘  ∈  ℤ  ∣  ( 𝑀  ≤  𝑘  ∧  𝑘  ≤  𝑁 ) } )  | 
						
						
							| 7 | 
							
								
							 | 
							df-fz | 
							⊢ ...  =  ( 𝑚  ∈  ℤ ,  𝑛  ∈  ℤ  ↦  { 𝑘  ∈  ℤ  ∣  ( 𝑚  ≤  𝑘  ∧  𝑘  ≤  𝑛 ) } )  | 
						
						
							| 8 | 
							
								
							 | 
							zex | 
							⊢ ℤ  ∈  V  | 
						
						
							| 9 | 
							
								8
							 | 
							rabex | 
							⊢ { 𝑘  ∈  ℤ  ∣  ( 𝑀  ≤  𝑘  ∧  𝑘  ≤  𝑁 ) }  ∈  V  | 
						
						
							| 10 | 
							
								3 6 7 9
							 | 
							ovmpo | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀 ... 𝑁 )  =  { 𝑘  ∈  ℤ  ∣  ( 𝑀  ≤  𝑘  ∧  𝑘  ≤  𝑁 ) } )  |