| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzval |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ) |
| 2 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 3 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 4 |
2 3
|
sstri |
⊢ ℤ ⊆ ℝ* |
| 5 |
4
|
sseli |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ* ) |
| 6 |
4
|
sseli |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ* ) |
| 7 |
|
iccval |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( 𝑀 [,] 𝑁 ) = { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ) |
| 8 |
5 6 7
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 [,] 𝑁 ) = { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ) |
| 9 |
8
|
ineq1d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) = ( { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ∩ ℤ ) ) |
| 10 |
|
inrab2 |
⊢ ( { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ∩ ℤ ) = { 𝑘 ∈ ( ℝ* ∩ ℤ ) ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } |
| 11 |
|
sseqin2 |
⊢ ( ℤ ⊆ ℝ* ↔ ( ℝ* ∩ ℤ ) = ℤ ) |
| 12 |
4 11
|
mpbi |
⊢ ( ℝ* ∩ ℤ ) = ℤ |
| 13 |
12
|
rabeqi |
⊢ { 𝑘 ∈ ( ℝ* ∩ ℤ ) ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } |
| 14 |
10 13
|
eqtri |
⊢ ( { 𝑘 ∈ ℝ* ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ∩ ℤ ) = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } |
| 15 |
9 14
|
eqtr2di |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
| 16 |
1 15
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |