Metamath Proof Explorer


Theorem fmpo

Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010)

Ref Expression
Hypothesis fmpo.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion fmpo ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝐷𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 )

Proof

Step Hyp Ref Expression
1 fmpo.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 1 fmpox ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝐷𝐹 : 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ⟶ 𝐷 )
3 iunxpconst 𝑥𝐴 ( { 𝑥 } × 𝐵 ) = ( 𝐴 × 𝐵 )
4 3 feq2i ( 𝐹 : 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ⟶ 𝐷𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 )
5 2 4 bitri ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝐷𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 )