Metamath Proof Explorer


Theorem fzoval

Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fzoval NM..^N=MN1

Proof

Step Hyp Ref Expression
1 id m=Mm=M
2 oveq1 n=Nn1=N1
3 1 2 oveqan12d m=Mn=Nmn1=MN1
4 df-fzo ..^=m,nmn1
5 ovex MN1V
6 3 4 5 ovmpoa MNM..^N=MN1
7 simpl MNM
8 fzof ..^:×𝒫
9 8 fdmi dom..^=×
10 9 ndmov ¬MNM..^N=
11 7 10 nsyl5 ¬MM..^N=
12 simpl MN1M
13 fzf :×𝒫
14 13 fdmi dom=×
15 14 ndmov ¬MN1MN1=
16 12 15 nsyl5 ¬MMN1=
17 11 16 eqtr4d ¬MM..^N=MN1
18 17 adantr ¬MNM..^N=MN1
19 6 18 pm2.61ian NM..^N=MN1