Metamath Proof Explorer


Theorem ovmpoa

Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013)

Ref Expression
Hypotheses ovmpoga.1 x=Ay=BR=S
ovmpoga.2 F=xC,yDR
ovmpoa.4 SV
Assertion ovmpoa ACBDAFB=S

Proof

Step Hyp Ref Expression
1 ovmpoga.1 x=Ay=BR=S
2 ovmpoga.2 F=xC,yDR
3 ovmpoa.4 SV
4 1 2 ovmpoga ACBDSVAFB=S
5 3 4 mp3an3 ACBDAFB=S