Metamath Proof Explorer


Theorem ccatw2s1ccatws2

Description: The concatenation of a word with two singleton words equals the concatenation of the word with the doubleton word consisting of the symbols of the two singletons. (Contributed by Mario Carneiro/AV, 21-Oct-2018) (Revised by AV, 29-Jan-2024)

Ref Expression
Assertion ccatw2s1ccatws2 WWordVW++⟨“X”⟩++⟨“Y”⟩=W++⟨“XY”⟩

Proof

Step Hyp Ref Expression
1 ccatw2s1ass WWordVW++⟨“X”⟩++⟨“Y”⟩=W++⟨“X”⟩++⟨“Y”⟩
2 df-s2 ⟨“XY”⟩=⟨“X”⟩++⟨“Y”⟩
3 2 eqcomi ⟨“X”⟩++⟨“Y”⟩=⟨“XY”⟩
4 3 a1i WWordV⟨“X”⟩++⟨“Y”⟩=⟨“XY”⟩
5 4 oveq2d WWordVW++⟨“X”⟩++⟨“Y”⟩=W++⟨“XY”⟩
6 1 5 eqtrd WWordVW++⟨“X”⟩++⟨“Y”⟩=W++⟨“XY”⟩